Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We conduct an analysis of over 60,000 dwarf galaxies ( ) in search of photometric variability indicative of active galactic nuclei (AGNs). Using data from the Young Supernova Experiment, a time domain survey on the Pan-STARRS telescopes, we construct light curves for each galaxy in up to four bands (griz) where available. We select objects with AGN-like variability by fitting each light curve with a damped random walk (DRW) model. After quality cuts and removing transient contaminants, we identify 1100 variability-selected AGN candidates (representing 2.4% of the available sample). We analyze their spectra to measure various emission lines and calculate black hole (BH) masses, finding general agreement with previously found mass scaling relations and nine potential intermediate-mass BH candidates. Furthermore, we reanalyze the light curves of our candidates to calculate the dampening timescaleτDRWassociated with the DRW and see a similar correlation between this value and the BH mass. Finally, we estimate the active fraction as a function of stellar mass and see evidence that the active fraction increases with host mass.more » « lessFree, publicly-accessible full text available May 27, 2026
-
Abstract We present a detailed analysis of AT 2020nov, a tidal disruption event (TDE) in the center of its host galaxy, located at a redshift ofz= 0.083. AT 2020nov exhibits unique features, including double-peaked Balmer emission lines, a broad UV/optical flare, and a peak log luminosity in the extreme-ultraviolet (EUV) estimated at . A late-time X-ray flare was also observed, reaching an absorbed luminosity of 1.67 × 1043erg s−1approximately 300 days after the UV/optical peak. Multiwavelength coverage, spanning optical, UV, X-ray, and mid-infrared (MIR) bands, reveals a complex spectral energy distribution (SED) that includes MIR flaring indicative of dust echoes, suggesting a dust covering fraction consistent with typical TDEs. Spectral modeling indicates the presence of an extended, quiescent disk around the central supermassive black hole with a radius of . The multicomponent SED model, which includes a significant EUV component, suggests that the primary emission from the TDE is reprocessed by this extended disk, producing the observed optical and MIR features. The lack of strong active galactic nuclei signatures in the host galaxy, combined with the quiescent disk structure, highlights AT 2020nov as a rare example of a TDE occurring in a galaxy with a dormant but extended preexisting accretion structure.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae.more » « lessFree, publicly-accessible full text available August 13, 2026
-
Abstract The nearby type II supernova, SN 2023ixf in M101 exhibits signatures of early time interaction with circumstellar material in the first week postexplosion. This material may be the consequence of prior mass loss suffered by the progenitor, which possibly manifested in the form of a detectable presupernova outburst. We present an analysis of long-baseline preexplosion photometric data in theg,w,r,i,z, andyfilters from Pan-STARRS as part of the Young Supernova Experiment, spanning ∼5000 days. We find no significant detections in the Pan-STARRS preexplosion light curves. We train a multilayer perceptron neural network to classify presupernova outbursts. We find no evidence of eruptive presupernova activity to a limiting absolute magnitude of −7 mag. The limiting magnitudes from the full set ofgwrizy(average absolute magnitude ≈ −8 mag) data are consistent with previous preexplosion studies. We use deep photometry from the literature to constrain the progenitor of SN 2023ixf, finding that these data are consistent with a dusty red supergiant progenitor with luminosity ≈ 5.12 and temperature ≈ 3950 K, corresponding to a mass of 14–20M⊙.more » « less
-
Abstract We present Young Supernova Experimentgrizyphotometry of SN 2021hpr, the third Type Ia supernova sibling to explode in the Cepheid calibrator galaxy, NGC 3147. Siblings are useful for improving SN-host distance estimates and investigating their contributions toward the SN Ia intrinsic scatter (post-standardization residual scatter in distance estimates). We thus develop a principled Bayesian framework for analyzing SN Ia siblings. At its core is the cosmology-independent relative intrinsic scatter parameter,σRel: the dispersion of siblings distance estimates relative to one another within a galaxy. It quantifies the contribution toward the total intrinsic scatter,σ0, from within-galaxy variations about the siblings’ common properties. It also affects the combined distance uncertainty. We present analytic formulae for computing aσRelposterior from individual siblings distances (estimated using any SN model). Applying a newly trainedBayeSNmodel, we fit the light curves of each sibling in NGC 3147 individually, to yield consistent distance estimates. However, the wideσRelposterior meansσRel≈σ0is not ruled out. We thus combine the distances by marginalizing overσRelwith an informative prior:σRel∼U(0,σ0). Simultaneously fitting the trio’s light curves improves constraints on distanceandeach sibling’s individual dust parameters, compared to individual fits. Higher correlation also tightens dust parameter constraints. Therefore,σRelmarginalization yields robust estimates of siblings distances for cosmology, as well as dust parameters for sibling–host correlation studies. Incorporating NGC 3147's Cepheid distance yieldsH0= 78.4 ± 6.5 km s−1Mpc−1. Our work motivates analyses of homogeneous siblings samples, to constrainσReland its SN-model dependence.more » « less
-
Abstract We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600R⊙circumstellar shell of dusty material with a mass ∼5 × 10−5M⊙surrounding a and K RSG. This luminosity is consistent with RSG models of initial mass 11M⊙, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse).more » « less
-
ABSTRACT A growing number of supernovae (SNe) are now known to exhibit evidence for significant interaction with a dense, pre-existing, circumstellar medium (CSM). SNe Ibn comprise one such class that can be characterized by both rapidly evolving light curves and persistent narrow He i lines. The origin of such a dense CSM in these systems remains a pressing question, specifically concerning the progenitor system and mass-loss mechanism. In this paper, we present multiwavelength data of the Type Ibn SN 2020nxt, including HST/STIS ultraviolet spectra. We fit the data with recently updated CMFGEN models designed to handle configurations for SNe Ibn. The UV coverage yields strong constraints on the energetics and, when combined with the CMFGEN models, offer new insight on potential progenitor systems. We find the most successful model is a ≲4 M⊙ helium star that lost its $$\sim 1\, {\rm M}_\odot$$ He-rich envelope in the years preceding core collapse. We also consider viable alternatives, such as a He white dwarf merger. Ultimately, we conclude at least some SNe Ibn do not arise from single, massive (>30 M⊙) Wolf–Rayet-like stars.more » « less
-
ABSTRACT The progenitor system of the compact binary merger GW190425 had a total mass of $$3.4^{+0.3}_{-0.1}$$ M⊙ (90th-percentile confidence region) as measured from its gravitational wave signal. This mass is significantly different from the Milky Way (MW) population of binary neutron stars (BNSs) that are expected to merge in a Hubble time and from that of the first BNS merger, GW170817. Here, we explore the expected electromagnetic (EM) signatures of such a system. We make several astrophysically motivated assumptions to further constrain the parameters of GW190425. By simply assuming that both components were NSs, we reduce the possible component masses significantly, finding $$m_{1}=1.85^{+0.27}_{-0.19}$$ M⊙ and $$m_{2}=1.47^{+0.16}_{-0.18}$$ M⊙. However, if the GW190425 progenitor system was an NS–black hole (BH) merger, we find best-fitting parameters $$m_{1}=2.19^{+0.21}_{-0.17}$$ M⊙ and $$m_{2}=1.26^{+0.10}_{-0.08}$$ M⊙. For a well-motivated BNS system where the lighter NS has a mass similar to the mass of non-recycled NSs in MW BNS systems, we find $$m_{1}=2.03^{+0.15}_{-0.14}$$ M⊙ and m2 = 1.35 ± 0.09 M⊙, corresponding to only 7 per cent mass uncertainties. For all scenarios, we expect a prompt collapse of the resulting remnant to a BH. Examining detailed models with component masses similar to our best-fitting results, we find the EM counterpart to GW190425 is expected to be significantly redder and fainter than that of GW170817. We find that almost all reported search observations were too shallow to detect the expected counterpart to GW190425. If the LIGO–Virgo Collaboration promptly provides the chirp mass, the astronomical community can adapt their observations to improve the likelihood of detecting a counterpart for similarly ‘high-mass’ BNS systems.more » « less
An official website of the United States government
